3β-ACETOXYHOPAN-1β,22-DIOL, A TRITERPENE FROM THE LICHEN PSEUDOPARMELIA TEXANA*

SIEGFRIED HUNECK, ALFRED PREISS, JÜRGEN SCHMIDT and A. MORALES MENDEZT

Institute of Plant Biochemistry, Research Centre for Molecular Biology and Medicine of the Academy of Sciences of the GDR, GDR-401 Halle-Saale, Weinberg, German Democratic Republic; †Instituto de Investigacion Quimica, Facultad de Farmacia, Universidad de los Andes, Apartado No. 142, Merida, Venezuela

(Received 11 January 1983)

Key Word Index—Pseudoparmelia texana; Parmeliaceae; lichen; 3β-acetoxyhopan-1β,22-diol; triterpene.

Abstract—From the lichen *Pseudoparmelia texana* the triterpene 3β -acetoxyhopan- 1β ,22-diol has been isolated and its structure elucidated.

INTRODUCTION

During our studies on the chemistry of lichens we investigated *Pseudoparmelia texana* from the Venezuelan Andes and found, in the benzene extract of this species, in addition to the depside divaricatic acid, a new triterpene, the structural elucidation of which we describe in this report.

RESULTS AND DISCUSSION

The triterpene (1) had mp 273-275° and according to the high resolution mass spectrum the formula was $C_{32}H_{54}O_4$ (found 502.4038; calc. 502.4022). The optical rotation could not be determined because 1 was extremely insoluble in the common solvents. The IR spectrum, with strong bands at 1260, 1702, 3500 and 3620 cm⁻¹, revealed the presence of an acetoxy group and two hydroxyl groups. Acetylation of 1 with acetic anhydride-pyridine at 100° gave an acetate (2) with the formula C₃₄H₅₆O₅ (MS, found 544.4112; calc. 544.4127) which made likely the presence of one tertiary hydroxyl group. Saponification of 1 yielded the triol, 3, $C_{30}H_{52}O_3$, mp 246–248° and $[\alpha]_D^{24}$ +6°, not identical with any of the known triterpenes from lichens. Oxidation of 1 with Sarett's reagent led to the ketone, 4, which on saponification with potassium hydroxide-methanol lost the elements of water with the formation of the α,β -unsaturated ketone, 5, with UV λ_{max} 226 nm (log ε 3.87; in methanol) in excellent agreement with the UV spectrum of allo-betul-2-en-1-one [1] with UV λ_{max} 226 nm (log ε 3.94; in methanol). Hydrogenation of 5 with Adams' catalyst yielded the ketol, 6. Treatment of 4 and 6 with acetic acid-sulphuric acid gave the hop-17(21)-enes, 7 and 8, respectively.

The mass spectra of 1–6 showed fragments at m/z 207, 189 and 149 (Scheme 1) typical of 22-hydroxyhopanes [2] and suggested that the other two oxygen functions were attached to C-1 and C-3 of ring A of the hopane skeleton. A vicinal position of the hydroxyl groups could be excluded because the triol, 3, did not react with periodate.

R R'

^{*}Part 136 in the series "Lichen Substances". For Part 135 see Huneck, S. and John, V. *Herzogia* (submitted).

2028 S. Huneck et al.

Scheme 1. Mass spectral fragmentation of the hopanes, 1-8.

The ORD spectra of 4, 6 and 5 were in very good agreement with the ORD spectra of allo-betul-1-one and allo-betul-2-en-1-one, respectively, proving position C-1 of the keto group in 4, 5 and 6 (Fig. 1).

The final proof of the structure and stereochemistry of 1-8 came from the ¹H NMR and ¹³C NMR spectra. The

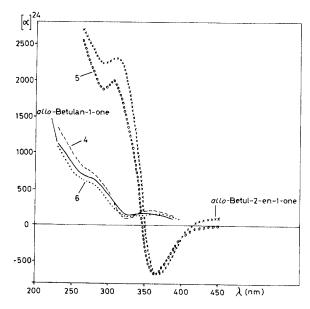


Fig. 1. ORD spectra of 3β-acetoxy-22-hydroxyhopan-1-one (4), 22-hydroxyhopan-1-one, 22-hydroxyhop-2-en-1-one (5), allobetul-1-one and allo-betul-2-en-1-one.

¹H NMR spectrum of 2 (200 MHz, CDCl₃) showed, between δ 4.5 and 4.7, two double doublets corresponding to the protons at C-1 and C-3, respectively. Irradiation at δ 1.87 changed the double doublets into two doublets with $J_{a,a} = 13.0 \text{ Hz}$ while irradiation at 1.66 changed the two double doublets into two doublets with $J_{a,e} = 5.0 \text{ Hz}$; hence, the multiplet at 1.87 corresponded to the equatorial H-2 α and the multiplet at 1.66 to the axial H-2 β . In the ketone, 4, the axial H-2 β (δ 2.97, t, J_{gem} = 11.8 Hz) coupled with the equatorial H-2 α (2.41, dd, $J_{a,e}$ = 5.0 Hz, J_{gem} = 11.8 Hz) and with the axial proton at C-3 (4.68, dd, $J_{a,e}$ = 5.0 Hz, $J_{a,a}$ = 11.8 Hz). The correlation of the signals was proved by double resonance experiments in the following way. Irradiation at δ 2.41 transformed the triplet at 2.97 and the double doublet at 4.9 into a doublet with $J_{a,a} = 11.8$ Hz; irradiation at 2.97 transformed the double doublet at 2.41 and the double doublet at 4.68 into doublets with $J_{a,e} = 5.0$ Hz. Finally, irradiation at $\delta 4.68$ transformed the triplet at 2.97 and the double doublets at 2.41 into doublets with $J_{gem} = 11.8$ Hz, respectively. The ¹H NMR spectrum (100 MHz, CDCl₃) of the α,β unsaturated ketone, 5, showed two doublets at δ 6.20 and $5.85 (J_{AX} = 10.0 \text{ Hz})$ corresponding to the vinylic protons at C-2 and C-3, respectively. These chemical shifts are in good agreement with the corresponding shifts of the vinylic protons of allo-betul-2-ene-1-one: H-2 at $\delta 6.23$ and H-3 at 5.63 ($J_{AX} = 10.0$ Hz). Contrary to this the doublets of the vinylic protons at C-3 and C-2 of allobetul-1-en-3-one were situated at $\delta 5.77$ and 7.10 (J_{AX} = 10.0 Hz).

The signals of the ¹³C NMR spectrum of 2 were correlated with C-12-C-22 and C-27-C-30 by their multiplicity and by comparison with the chemical shifts of 6acetylzeorin and hopane [3]. Especially noteworthy are the singlets at δ 73.9 in the ¹³C NMR spectra of **2** and **6**, demonstrating the presence of the hydroxyisopropyl side chain. For the correlation of the ring A/B carbon atoms the influence of the acetoxy groups at C-1 and C-3 must be taken into consideration. The influence of the 3β -acetoxy group was derived from 13C NMR data of lupane derivatives [3]. Because corresponding data of 1-acetoxylated hopanes or lupanes are unknown we estimated the influence of the acetoxy group in this position from data published for 1β -acetoxy- 5α -androstanes [4]. The signals of C-23 and C-24 are shifted to higher field by reason of the γ -gauche effect between the 3β -acetoxy group and C-23 and C-24. The 13C NMR chemical shifts and the multiplicity of the signals of 2 and 6 are summarized in Table 1.

The mass spectral fragmentation of the hopane derivatives 1–8 is mainly characterized by bond cleavages in ring C (Scheme 1) [2, 5]. Ions of type \mathbf{b} , $[\mathbf{b} - \mathbf{H}_2 \mathbf{O}]^+$ and $[\mathbf{b} - \mathbf{C}_3 \mathbf{H}_6 \mathbf{O}]^+$ locate one hydroxyl group at C-22. The appearance of ions \mathbf{d} and \mathbf{e} is typical for hopanes with a 17(21)-double bond. The presence of two functional groups at ring A can be deduced from the mass spectral data of the keto derivatives $\mathbf{4}$ and $\mathbf{6}$ –8. The key ions \mathbf{f} and \mathbf{g} appear in analogy to 1-oxo-allo-betulanes [6]. The mass shifts of 2 a.m.u. towards lower masses in the mass spectra of $\mathbf{4}$ and $\mathbf{7}$ can be explained by an 1,2-elimination of the 3β -acetoxy function followed by ring-B cleavage leading to ions \mathbf{f} and \mathbf{g} .

3β-Acetoxy-1β,22-diol (1) is the first triterpene with an oxygen function at C-1 isolated from a lichen. It was also found recently in *Dirinaria aegialita* (Afz. in Ach.) Moore (Physciaceae) [Huneck, S., unpublished results].

Table 1. ¹³ C NMR chemical shifts (50.33 MHz, CDCl ₃) and multi-
plicity (from SFORD-spectra) of the signals of 1β,3β-diacetoxyhopan-
22-ol (2) and 1-oxohopan-22-ol (6)

C No.	2	6	C No.	2	6
1	80.3 d	217.4 s	16	21.9 t	22.0 t
2	30.0 t	35.5 t	17	53.9 d	54.1 d
3	76.4 d	43.0 t	18	43.9 s	44.2 s
4	37.8 s	33.3 s	19	41.2 t	41.3 t
5	52.8 d	57.4 d	20	26.6 t	26.6 t
6	17.7 t	19.3 t	21	51.1 d	51.2 d
7	32.9 t	32.7 t	22	73.9 s	73.9 s
8	42.3 s	42.3 s	23	27.8 q	32.0 q
9	50.7 d	41.5 d	24	16.9 q	22.6 q
10	42.2 s	52.4 s	25	12.8 q	29.7 q
11	23.0 t	23.8 t	26	16.0 q	15.1 q
12	24.0 t	24.1 t	27	16.9 q	17.1 q
13	49.3 d	50.5 d	28	16.1 <i>q</i>	16.2q
14	41.9 s	41.9 s	29	28.7 q	28.7 q
15	34.5 t	34.5 t	30	30.9 q	30.8 q

Compound 2: Me-CO-at 1β , 21.0 q and 170.0 s; Me-CO- at 3β , 21-7 q and 170.2 s.

EXPERIMENTAL

3\beta-Acetoxyhopan-1\beta,22-diol (1). Pseudoparmelia texana (Tuckerman) Hale (Venezuela, Estado Mèrida, El Pedregal de Jaji; leg. A. Morales Mendez, Feb. 1980, det. M. Lopez-Figueiras; voucher specimen under AMM No. 7 in the Herbarium of A. Morales Mendez) (200 g) was extracted with n-hexane, C₆H₆ and Me₂CO. The C₆H₆ and Me₂CO extracts were combined and recrystallized from CHCl₃-MeOH to yield 1 (3.5 g, 1.75 %) in small plates of mp 273–275°. $C_{32}H_{54}O_4$. IR v_{max}^{KBr} cm⁻¹: 834, 864, 892, 906, 916, 940, 962, 978, 1026, 1050, 1090, 1110, 1142, 1260, 1320, 1380, 1412, 1450, 1466, 1702, 2990, 3500, 3620. MS m/z (rel. int.): $502 [M]^+$ (12), $484.3913 [M - H_2O]^+$ (32) (calc. 484.3916), $466.3814 [M - 2H_2O]^+$ (7) (calc. 466.3811), $441.3377 [M - H_2O]^+$ $-C_3H_7$]⁺ (16) (calc. 441.3368), 424.3692 [M – H₂O – HOAc]⁺ (20) (calc. 424.3700), 406 $[M - 2H_2O - HOAc]^+$ (15), 384 [M $-C_3H_6O - HOAc]^+$ (17), 366.3291 $[M - H_2O - C_3H_6O]$ -HOAc]+ (43) (calc. 366.3286), 355 (12), 351 (11), 305.2130 [c]+ (12) (calc. 305.2117), 233 (10), 229 (17), 217 (32), 207 [b] + (73), 203 (49), 189.1653 [**b** – H₂O]⁺ (100) (calc. 189.1653), 175 (56), 161(58), $149 [\mathbf{b} - \mathbf{C}_3 \mathbf{H}_6 \mathbf{O}]^+$ (98), 135 (58), 121 (50), 109 (44).

 1β , 3β -Diacetoxyhopan-22-ol (2). Compound 1 (0.1 g) in pyridine (6 ml) with Ac₂O (2 ml) was heated at 100° for 2 hr and chromatography of the crude acetate on Si gel (5 g) gave 2. From CHCl₃-MeOH plates of mp 256-258° and $[\alpha]_D^{24}$ + 37° (CHCl₃; c0.86). $C_{34}H_{56}O_5$. IR v_{max}^{KBr} cm⁻¹: 832, 862, 906, 920, 968, 990, 1030, 1116, 1140, 1162, 1240, 1370, 1450, 1468, 1720, 2990, 3580. ¹H NMR (200 MHz, CDCl₃): δ0.71 (3H, s, Me-28), 0.81 (6H, s, Me-23, Me-24), 0.90 (3H, s, Me-25), 0.93 (3H, s, Me-27), 0.98 (3H, s, Me-26), 1.15 (3H, s, Me-29), 1.17 (3H, s, Me-30), 1.66 (1H, m, H- 2β), 1.87 (1H, m, H-2 α), 1.95 (3H, s, OAc-1 β), 1.99 (3H, s, OAc-3 β), 4.57, (1H, dd, H-3 α), 4.65 (1H, dd, H-1 α). MS m/z (rel. int.): 544 $[M]^+$ (5), 526.4014 $[M-H_2O]^+$ (32) (calc. 526.4022), 484.3893 $[M-HOAc]^+$ (13) (calc. 484.3916), 483.3472 $[M-H_2O]$ $-C_3H_7$] + $(\bar{17})$ (calc. 483. 3474), 466.3796 [M - H₂O - HOAc] + (26) (calc. 466.3811), 457 (24), 424.3692 $[M-2HOAc]^+$ (38) (calc. 424.3705), 406.3599 $[M-H_2O-2HOAc]^+$ (36) (calc. 406.3599), 391 (16), 366.3284 $[M-2HOAc-C_3H_6O]^+$ (66) (calc. 366.3286), 337 (20), 297 (14), 229 (20), 216 (35), 207 [b]

(34), 202 (63), 189.1645 $[\mathbf{b} - \mathbf{H_2O}]^+$ (100) (calc. 189.1643), 175 (53), 161 (56), 149 $[\mathbf{b} - \mathbf{C_3H_6O}]^+$ (77), 135 (56), 121 (54), 107 (48).

Hopan-1β,3β,22-triol (3). Compound 3 was prepared by saponification of 1 in EtOH (20 ml) with KOH (1 g) under reflux for 2 hr. After usual work-up and crystallization from CHCl₃-MeOH, flat needles of mp 246-248° and $[\alpha]_D^{24}$ + 6° (pyridine; c 0.56). $C_{30}H_{52}O_3$. IR v_{max}^{KBr} cm⁻¹: 832, 890, 910, 940, 1000, 1038, 1108, 1150, 1246, 1268, 1384, 1470, 3000, 3550. MS m/z (rel. int.): 460 [M] + (10), 442 [M - H₂O] + (17), 427 (10), 424 [M - 2H₂O] + (13), 409 (7), 402 [M - C₃H₆O] + (12), 399 [M - H₂O - C₃H₇] + (16), 384 [M - H₂O - C₃H₆O] + (21), 373 (15), 263 [c] + (14), 245 [c - H₂O] + (9), 220 (29), 207 [b] + (57), 189 [b - H₂O] + (94), 175 (40), 161 (49), 149 [b - C₃H₆O] + (100), 135 (49), 121 (46), 109 (45).

 $1-Oxo-3\beta$ -acetoxyhopan-22-ol (4). To a soln of 1 (0.5 g) in pyridine (0.5 l.) was added CrO₃ (1 g) and the mixture kept at room temp. for 1 week. After usual work-up, chromatography on Si gel and crystallization from CHCl₃-MeOH gave needles (0.39 g) of mp 254–256° (dec.) and $[\alpha]_D^{24} + 80^\circ$ (CHCl₃; c 0.825). $C_{32}H_{52}O_4$. IR v_{max}^{KBr} cm⁻¹: 846, 862, 898, 944, 970, 1030, 1076, 1108, 1136, 1160, 1250, 1380, 1460, 1702, 3000, 3640. ¹H NMR (200 MHz, CDCl₃): δ0.75 (3H, s, Me-28), 0.90 (3H, s, Me-24), 0.94 (3H, s, Me-27), 0.99 (3H, s, Me-26), 1.01 (3H, s, Me-23), 1.15 (3H, s, Me-29), 1.17 (3H, s, Me-30), 1.19 (3H, s, Me-25), 2.02 (3H, s, OAc-3 β), 2.41 (1H, dd, H-2 α), 2.97 (1H, t, H-2 β), 4.68 (1H, dd, H-3a). MS m/z (rel. int.): 500.3874 [M]⁺ (4) (calc. 500.3865), $482.3752[M-H₂O]^+$ (16) (calc. 482.3760), 467 (4), 439.3239[M $-H_2O-C_3H_7$]⁺ (10) (calc. 439.3212), 422.3546 $\lceil M-H_2O \rceil$ -HOAc]⁺ (16) (calc. 422.3546), 413 (13), 407 (8), 379.3010 [M $-H_2O-C_3H_7-HOAc]^+$ (14) (calc. 379.3001), 353 (22), 311 (9), 243.1749 $[\mathbf{c} - HOAc]^+$ (10) (calc. 243.1749), 233 (18), 217 (36), 203.1425 $[\mathbf{a} - \mathbf{HOAc}]^+$ (15) (calc. 203.1436), 189.1641 $[\mathbf{b}]$ $-H_2O$]⁺ (73) (calc. 189.1643), 175 (24), 161 (38), 150.1044 [g]⁺ (100) (calc. 150.1045), 149 $[\mathbf{b} - C_3H_6O]^+$ (39), 137 $[\mathbf{f}]^+$ (49), 135 (57), 121 (62), 109 (58).

1-Oxohop-2-en-22-ol (5). Heating 4 (0.1 g) in MeOH (25 ml) and C_6H_6 (10 ml) with KOH (1.5 g) under reflux for 2.5 hr and usual work-up and crystallization from CHCl₃-MeOH gave needles of 5, mp 246–250° and $[\alpha]_D^{24}$ + 100° (CHCl₃; c 0.65).

2030 S. Huneck et al.

1-Oxohopan-22-ol (6). Hydrogenation of 5 (0.1 g) in EtOH (50 ml) with Adams' catalyst (0.1 g) under normal conditions for 3 hr gave 6. After usual work-up and crystallization from CHCl₃-MeOH, needles of mp 236-238 and $[\alpha]_D^{24} + 84^{\circ}$ (CHCl₃; c 0.685). C₃₀H₅₀O₂. IR $\nu_{\rm max}^{\rm KB}$ cm⁻¹: 836, 860, 942, 982, 1010, 1044, 1138, 1370, 1390, 1450, 1464, 1684, 2980, 3550. ¹H NMR (200 MHz, CDCl₃): δ0.75 (3H, s, Me-28), 0.88 (3H, s, Me-24), 0.96 (3H, s, Me-23), 0.98 (3H, s, Me-26), 1.02 (3H, s, Me-27), 1.15 (3H, s, Me-29), 1.17 (3H, s, Me-30), 1.20 (3H, s, Me-25), 2.04 (1H, m, H-2α), 2.81, 2.88, 2.94 (1H, ddd, H-2β). MS m/z (rel. int.): 424 [M - H₂O] + (25), 409 (7), 381 [M - H₂O - C₃H₇] + (30), 355 (22), 313 (8), 245 [c] + (27), 235 (47), 229 (32), 219 (43), 207 [b] + (53), 205 [a] + (95), 149 [b - C₃H₆O] + (100), 175 (67), 161 (80), 152 [g] + (95), 149 [b - C₃H₆O] + (94), 139 [f] + (91), 135 (94), 121 (90), 109 (79).

 3β -Acetoxyhop-17(21)-en-1-one (7). Compound 7 was obtained by treatment of 4 (10 mg) in HOAc (2 ml) with a soln of H₂SO₄ (0.3 ml) in HOAc (0.5 ml) at room temp. for 12 hr. After usual work-up and crystallization from CHCl₃-MeOH, plates of mp 270–271° (dec.). $C_{32}H_{50}O_3$. IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 830, 862, 920, 960, 968, 982, 1030, 1076, 1118, 1138, 1184, 1240, 1360, 1378, 1442, 1462, 1700, 1714, 2770. MS m/z (rel. int.): 482 [M]⁺ (6), 467 (4), 439 [M - C₃H₇]⁺ (8), 422 [M - HOAc]⁺ (18), 407 (7), 379 [M

 $- HOAc - C_3H_7$]⁺ (48), 243 [c - HOAc]⁺ (34), 217 (12), 203 [a - HOAc]⁺ (13), 189 [b]⁺ (32), 175 (33), 161 (52), 150 [e]⁺ and [g]⁺ (96), 137 [f]⁺ (96), 136 [d]⁺ (100), 135 (92), 121 (75), 107 (44).

Hop-17(21)-*en*-1-*one* (**8**). Treatment of **6** (20 mg) in HOAc (2 ml) with a soln of H₂SO₄ (0.3 ml) in HOAc (0.5 ml) at room temp. for 12 hr gave compound **8**. After usual work-up and crystallization from CHCl₃-MeOH, plates of mp 169–171° and $[\alpha]_{D}^{24}$ + 88° (CHCl₃; *c* 1.585). C_{30} H₄₈O. IR v_{max}^{KBr} cm⁻¹: 850, 954, 970, 1008, 1050, 1112, 1130, 1182, 1238, 1300, 1380, 1460, 1694, 2950. ¹H NMR (100 MHz, CDCl₃); δ0.87 (3H, *s*, −Me), 0.89 (3H, *d*, Me-29), 0.93 (3H, *s*, −Me), 0.94 (3H, *s*, −Me), 0.94 (3H, *d*, Me-30), 1.04 (3H, *s*, −Me), 1.07 (3H, *s*, Me-25). MS m/z (rel. int.): 424 [M] * (48), 409 (19), 381 [M − C₃H₇] * (82), 287 (9), 245 [e] * (56), 219 (14), 205 [a] * (15), 203 (36), 189 [b] * (73), 177 (87), 161 (90), 152 [g] * (86), 150 [e] * (60), 149 (60), 139 [f] * (83), 136 [e] * (99), 135 (100), 121 (83), 111 (82).

Acknowledgement—We thank Dr. P. Franke, Zentralinstitut für Molekularbiologie der AdW, Berlin-Buch, for recording the high-resolution mass spectra.

REFERENCES

- 1. Huneck, S. (1965) Chem. Ber. 98, 2291.
- 2. Schmidt, J. and Huneck, S. (1979) Org. Mass Spectrom. 14, 656.
- Wenckert, E., Baddeley, G. V., Burfitt, I. R. and Moreno, L. N. (1978) Org. Magn. Reson. 11, 337.
- 4. Blunt, J. W. and Stothers, J. B. (1977) Org. Magn. Reson. 9, 439.
- 5. Corbett, R. E. and Young, H. (1966) J. Chem. Soc. C 1556.
- Schmidt, J. and Huneck, S. (1979) Org. Mass. Spectrom. 14, 646